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Twin-correlations in atoms

K. Mølmer

Institute of Physics and Astronomy, University of Aarhus, 8000 Århus C, Denmark
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Abstract. We discuss the possibility of preparing an atomic sample of atoms with minimum fluctuations in
the difference between populations of two levels. A first scheme involves absorption of twin beams of light,
and it presents a variant of a recent proposal for atomic spin squeezing within an excited state manifold
[Kuzmich et al., Phys. Rev. Lett. 79, 4782 (1997)]. A second scheme involves atoms with two stable states,
and we suggest that by use of quantum non-demolition detection and feed-back optical pumping, we may
ensure a perfect agreement between the number of atoms in these two states.

PACS. 42.50.Lc Quantum fluctuations, quantum noise, and quantum jumps – 03.70.+k Theory
of quantized fields – 75.10.Jm Quantized spin models

1 Introduction

In precision spectroscopy on atomic samples there are var-
ious noise sources contributing to the total measurement
uncertainty. The application of non-classical states of the
electromagnetic field such as squeezed states and twin-
beams has been shown [1] to reduce the effects of quan-
tum noise of the field, and in a variety of experiments,
the contributions of the quantum noise of the atoms have
now been observed [2–5]. It has therefore been proposed
to produce squeezed or quantum entangled states of the
atomic system in order to reduce also the atomic noise
contribution.

One line of research in this direction has dealt with spin
squeezed states of ions, accommodated by the complete
control of the state of such a multi-particle system due to
the coupling of internal and external degrees of freedom
[6]. This work is related to ongoing research in quantum
information processing, and it has been pointed out that
the damaging effects of decoherence and of probing the
system makes the analysis more complicated, and that one
may benefit from incorporating error-correction schemes,
developed in the context of quantum computation [7]. Re-
cently, an entirely different approach was proposed [8]:
rather than requiring complete control of the state of all
the atoms, one assumes an optically thick gas with very
many atoms N , and one considers complete absorption of
non-classical light beams by this gas. Instead of actively
squeezing the atomic spin, this is a process in which prop-
erties of the incident field are mapped onto the collective
atomic variables. In relation to a proposed experimental
implementation, the absorption of a coherent field on one
transition |0〉 ↔ |1〉 and absorption of a squeezed field
on another transition |0〉 ↔ |2〉 in V -type atoms was an-
alyzed in detail in [8]. The atoms decay by spontaneous
emission back to the ground state |0〉 but the atomic pop-

ulations in the excited states (much smaller than N) and
coherences restricted to the excited state manifold reflect
the statistics of the fields, and it was shown that a weak
probe, coupling the states |1〉 and |2〉 to a further excited
level, will be sensitive to the atomic fluctuations, and that
measurements may benefit from their reduction compared
to those of a classically excited gas.

In this paper, we shall consider a simpler variant of the
proposal, in which there is no need to consider the spatio-
temporal character of the light propagation problem as
in [8].

In Section 2, we consider the absorption of twin beams
of light, where the photons in each pair excite two different
transitions in the atoms. We investigate the fluctuations in
the population difference of the excited atomic states when
only a fraction of the light beams is absorbed. In Section 3,
we turn to ground states, where we propose a method
which can lead to near-vanishing population fluctuations
by quantum non-demolition measurements and feed-back
optical pumping. In the concluding Section 4, we discuss
the role of band-width of the non-classical radiation fields,
and we describe some natural generalizations of the work
presented.

2 Atomic twin-correlations induced
by absorption of twin-beams of light

We consider a gas of atoms with one lower and two up-
per states, illuminated by a light field consisting of twin-
correlated photons. The number of photons in either of
the two modes fluctuates, but we have identically the
same number of photons in each mode, since the photons
are assumed generated in a down-conversion process, e.g.,
in a non-degenerate optical parametric oscillator (OPO).
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Fig. 1. (a) V-atoms excited by incident twin-beams, one field-
mode excites the |0〉 → |1〉 transition, the other excites the
|0〉 → |2〉 transition. (b) Classical analog: balls are put in pairs
on two shelves, from which they, independently, may fall back
on the floor.

We assume that the two field modes interact with the two
optical transitions |0〉 ↔ |1〉 and |0〉 ↔ |2〉 as indicated
in Figure 1. In analogy with our proposal in reference [8],
we may imagine that the two twin-correlated field modes
correspond to photons of opposite circular polarization so
that the dipole selection rules ensure perfect association of
each field mode with a specific transition between atomic
Zeeman sub-levels. We may alternatively imagine different
excited levels, so that resonance conditions associate the
field modes with the atomic transitions. We shall in the
following only need the property that the fields are thus
distinguishable by the atoms.

2.1 Complete absorption

If all photons of both beams are absorbed in the gas, i.e. if
it is optically thick, the difference (N1−N2) in numbers of
atoms populating the two excited states does not change
due to interaction with the incident radiation field. Note,
we have no control over which atoms are excited by pho-
tons from one or the other field mode, it is the total excited
state populations over the entire gas that are considered.
The atoms decay by spontaneous emission of light. This
occurs independently for atoms in states |1〉 and |2〉, and
will hence lead to fluctuations in the population difference.
If the atomic decay rate is Γ , the probability distribution
P (N1, N2) of having a definite number of atoms in each of
the excited states changes due to spontaneous emission.
The rate of change of P (N1, N2) is given by the equation

d

dt
P (N1, N2)|loss = −ΓN1P (N1, N2)− ΓN2P (N1, N2)

+ Γ (N1 + 1)P (N1 + 1, N2)

+ Γ (N2 + 1)P (N1, N2 + 1) (1)

where the terms in the first line describe processes in which
N1 and N2 atoms are excited but one of them decays, and
the second and third lines describe the contribution from
processes where one atom too many is excited in one of
the states, and where a spontaneous emission therefore

increases the probability of having a certain set of occu-
pation numbers N1 and N2.

From equation (1) one obtains the rate of change of the
mean population difference 〈N1 − N2〉 by multiplying on
both sides by (N1 −N2) and carrying out the summation
over all values (the terms of the second and third lines
with displaced arguments in the probability distribution
are treated by a change of variable Ni ↔ Ni + 1). This
yields

d

dt
〈N1 −N2〉|loss = −Γ 〈N1 −N2〉, (2)

and in the same way, we obtain the equation for the rate
of change of the variance

d

dt
〈(N1−N2)2〉|loss=−2Γ 〈(N1−N2)2〉+Γ 〈N1+N2〉. (3)

In steady state, the equation for the variance is readily
solved and shows that

〈(N1 −N2)2〉 = 〈N1 +N2〉/2. (4)

If the transitions had been excited by classical fields, N1

andN2 would have been independent variables distributed
according to Poisson distributions, and the variance would
have been twice as large.

The result is not surprising: the atoms are excited
in pairs and their subsequent independent decays can
only partly (50%) deteriorate this correlation established
among different atoms in the gas. The fluctuations end up
half-way between the perfectly matching incident fields
and the uncorrelated outgoing fluorescence, just like the
amplitude fluctuations, considered in [8]. Note also the
complete analogy between our treatment of the atomic
excitation and the analysis of the intracavity-fields in a
non-degenerate OPO: in the OPO the populations of the
two intra-cavity field modes are fed by the non-linear crys-
tal, and the linear loss out of the cavity leads to the same
relations for the intracavity photon number difference as
our equations (2, 3) and to the same factor two reduction
in steady state compared to coherent states.

2.2 Incomplete absorption

It was pointed out in reference [8] that complete absorp-
tion of the light field is important. This is, in fact, more
easily understood and analyzed in case of populations than
in the case of coherences: if a light field with a large def-
inite number of photons n is transmitted through a gas,
and only a fraction f of the light intensity is absorbed
(on the average), the actual number of absorbed photons
will be described by a binomial distribution, and in the
limit of small f and large n, this will approach a Poisson
distribution, indistinguishable from the result of classical
irradiation.

We consider now the case of twin beam absorption,
where the same intensity fraction f of both fields is ab-
sorbed. In addition to the above terms describing the rate
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of change of the population difference (2, 3), we must now
consider the changes occurring due to imperfect absorp-
tion.

Assume that with a rate of κ, n photons are incident
on the gas in mode 1 and the same number is incident
in mode 2. Photon numbers n1 and n2 are transmitted,
and the non-vanishing fluctuations of n1 − n2 represent a
source of fluctuations of the atomic population difference.

d

dt
〈N1 −N2〉|trans = κ〈(n− n1)− (n− n2)〉

= κf〈n− n〉 = 0. (5)

On the average, the same number of atoms will be excited
into either of the two excited states, but for the variance
we obtain the equation

d

dt
〈(N1 −N2)2〉|trans = κ(V ar(n1) + V ar(n2))

= κf(1− f)〈n+ n〉, (6)

where the last result is due to the number of transmitted
photons being binomially distributed, given the incident
number of photons in either mode.

The total number of excited atoms N1 + N2 on the
average equals the absorbed photon flux, divided by the
atomic decay rate, Γ 〈N1 +N2〉 = fκ〈n+n〉, hence we can
replace the photon numbers by atomic excitation numbers
in equation (6), add this equation to equation (3), and
obtain the steady state variance

〈(N1 −N2)2〉 =

(
2− f

2

)
〈N1 +N2〉. (7)

This equation interpolates between the 50% reduction
compared to classical noise for f = 1 and the classical
result when f → 0.

The same results are obtained if we replace the physical
situation by one of complete absorption of fields, which
before entering the gas, have been passed though a beam
splitter with a transmission probability of f .

3 Ground state twin atoms

It is difficult to imagine how to reduce the number fluc-
tuations in atomic excited states further, since in steady
state the linear uncorrelated loss processes exactly bal-
ance the correlated absorptions. It thus seems natural to
try to correlate the populations in atomic ground states
(or meta-stable states) in order to reduce the devastating
effects of spontaneous decay.

3.1 Super-binomial distribution by complete absorption

We first try out the idea of complete absorption, and
we consider, e.g., a gas of Λ-atoms, in which absorption
from twin beams of light may serve to equilibrate the two
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Fig. 2. (a) Atomic level scheme in which atoms excited out
of two ground states |1〉 and |2〉 by optical beams may decay
back into their initial state or into the other ground state. (b)
Classical analog: balls from two buckets are thrown into the
air and fall back into the buckets at random.

ground state populations. In order to eliminate the poten-
tial complication of stimulated Raman-processes, we con-
sider atoms with two lower and two upper states, so that
excitations occur from the ground states to different ex-
cited states, from which spontaneous decay may take the
atoms back into the initial state or into the other ground
state. This situation is illustrated in Figure 2.

The sketched process is indeed able to set up corre-
lations between the atoms. If the branching ratios from
decay of the upper states are identical for both ground
states, the probability for any atom to be in either ground
state is one half in the long time limit, but the popula-
tions N1 and N2 do not follow a binomial distribution: if
at some point we have N1 and N2 atoms in the ground
states, the absorption of a photon pair followed by sponta-
neous emission events, with a probability of 1/2 leaves the
atomic populations unchanged and with identical proba-
bilities 1/4 an atom is transferred from state |1〉 to |2〉 or
from |2〉 to |1〉. As a consequence, in steady state all val-
ues of N1 get the same probability, and the fluctuations of
N1 −N2 are much larger than for a binomial distribution
on the two states.

In fact, one obtains the same result if uncorrelated
fields with same mean intensity are absorbed: with prob-
ability 1/2 the next photon is in mode 1, thus with prob-
ability 1/4 an atom may be transferred from state |1〉 to
|2〉, with probability 1/4 an atom may be transferred from
state |2〉 to |1〉, and with the remaining probability of 1/2
the populations are unchanged.

It is the assumption of complete absorption of the in-
cident photons, independently of the atomic populations,
that causes the disappearance of the “usual” combinato-
rial dependence on N1 and N2. If the medium is not op-
tically thick, an overweight of atoms in one ground state
will cause stronger absorption from the corresponding field
mode, and hence the populations will be equilibrated ap-
proaching the binomial distribution in case of only weak
absorption.

3.2 Feed-back optical pumping

We shall now incorporate another idea, which has also
been applied in the preparation of non-classical light: feed-
back [9,10].

Our proposal is indeed very simple. Rather than ab-
sorbing fields on the two transitions, described above, we
imagine that they are used for a QND detection of the
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Fig. 3. Feed-back loop. Off-resonant probe fields, sensitive to
the number of atoms in each of two ground states, are detected.
The reading of their phase-difference φ1 − φ2 is fed back to a
laser which emits a resonant light pulse which causes a specified
average amount of optical pumping in the atomic gas.

numbers of atoms in the respective ground states. We
consider for example the dispersive interaction with off-
resonant probes causing phase-shifts of the fields propor-
tional to the number of atoms [11]. In an interferometric
set-up one may directly measure the phase-difference of
two probes corresponding to a measurement of the popu-
lation difference N1 −N2.

Given a measurement of N1−N2, we know the popula-
tion difference exactly, thus the fluctuations have already
been eliminated, but let us assume, that we want to main-
tain a vanishing number-difference, e.g., in a situation
where a weak external perturbation may cause changes in
the populations. In this case, we act back on the atomic
sample in accordance with the measurement result of the
QND detection. If we detect a population difference of
N1 −N2 = k0 we either inject a pulse with mean photon
number k0 being completely absorbed, or a stronger pulse
with a detuning, ensuring that on average k0 atoms are
excited. In both implementations, the pulse should excite
on average k0 atoms out of ground state |1〉 if k0 > 0 and
|k0| atoms out of state |2〉 if k0 < 0.

A set-up for this suggestion is illustrated in Figure 3.
Although the idea of complete absorption is not com-

patible with the following calculation, it is instructive to
apply an idealized version of this scheme to the situation
of only two atoms, being initially distributed on the in-
ternal states according to a binomial distribution. If, the
atoms are found in the same state, they are both excited
(by complete absorption of two photons), and with a prob-
ability of 1/2 they decay into different states, and the de-
sired result is obtained, whereas with probabilities of 1/4
they both decay into one or the other ground state. This
means that the desired state with N1 = N2 has a proba-
bility, which is updated as p→ p+ (1− p)/2 = (p+ 1)/2,
and 〈(N1 − N2)2〉 is reduced by a factor of two in each
iteration.

In Figure 4 we present calculations, based on a simi-
lar up-dating of the probability distribution for 400, 800
and 1200 atoms. The figure shows the variance as a func-
tion of the number of applications of coherent pulses with
mean photon number equal to the detected population
difference. In the relevant limit of many atoms, we find a
very rapid reduction of the fluctuations. According to our
procedure, when we detect a value for N1, we apply a co-
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Fig. 4. Variance of the population of one atomic ground state
as a function of the number of feed-back optical pumping
events, (lines are drawn to guide the eye). From below, the
curves correspond to initial binomial distributions of 400, 800
and 1200 atoms. Filled circles represent the approximation (9),
valid after one feed-back iteration.

herent pulse of photons after which the mean populations
are equal, but the variance ofN1 equals the variance of the
number of excited atoms returning to either of the ground
states. According to the Poisson distribution, correspond-
ing to the binomial splitting of a coherent pulse, this vari-
ance equals its mean, i.e., Var(N1)after = |N1 − N/2|.
Averaged over the initial probability distribution of N1,
P (N1), the variance of the distribution after the first iter-
ation is thus

Var(N1)after feed−back =
∑
N1

P (N1)|N1 −N/2|. (8)

This quite unusual “first moment” of the initial distribu-
tion can be easily computed, and for a Gaussian distribu-
tion, which offers an excellent approximation to the bino-
mial distribution of many particles, it leads to the variance
reduction after the first feed-back optical pumping pulse
has been applied:

Var(N1)after feed−back =
√

2Var(N1)/π. (9)

The variance in atom numbers is reduced to its square-
root, as confirmed by the numerical results in Figure 4.

Equation (9) is the main result of this section, appli-
cable for a distribution which is initially well-described by
a Gaussian.

As long as the variance remains large compared to
unity, which is by the way not very long, we may analyt-
ically investigate the effect of subsequent iterations, and
one obtains that they continue to reduce the variance by
extracting the square-root and multiplying by a numerical
factor of order unity involving Gamma-functions of argu-
ment (1/2 + 1/2n), where n is the number of iterations.

If a sub-Poissonian pulse is applied, the variance is
reduced by yet another factor between unity and two (it
is two for the absorption of a number state pulse due to
the binomial splitting of the decaying atoms).
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4 Discussion

Like in the case of excited state atomic spin squeezing, it
is worth emphasizing, that it is not a definite part of the
atoms that are in one or the other ground state. Neither is
the sample in a coherent superposition of states like the so-
called Dicke states [12]. This is effectively prevented by the
principal possibility to monitor the decay and in this way
identify the randomly selected set of atoms populating
one and the other state. Still, we may imagine probing
schemes, sensitive to effects accumulated over the whole
sample, where the reduced fluctuations, discussed in this
paper may be useful.

We wish to draw attention to an aspect concern-
ing the optical twin-correlations, that was neglected in
Section 2. The atomic sample absorbs and re-emits pho-
tons, and the atomic excitation derived from each photon
has a lifetime of Γ−1 in the system. Within this time scale
we must assume perfect twin-correlations of the incident
field modes, i.e., identical photon numbers. Now, over a
short time interval, the photon numbers may not be per-
fectly matched since one photon of a pair may leave the
OPO cavity before or after its partner. It is thus seen, that
the photon lifetimes in the OPO cavity must be shorter
than the atomic excited state lifetime, to ensure that pho-
ton twins are mapped on atomic twins, residing simulta-
neously in the excited atomic states in the sample. This
is actually equivalent to the requirement, identified in [8],
that the spectrum of non-classical light must be broader
than the atomic transition. Formalism exists to treat the
temporal aspects of feed-back correctly [9,10], and we are
currently investigating to which extent this formalism may
be adapted to our suggestion.

In case of ground state twins we do not see a similar
principal problem, since the atomic states are stable. In
a practical experiment, however, one may settle with a
finite resolution ∆N of the QND probing, and this will
then set the limit for the obtainable width of the final
population distribution. This emphasizes that even in a
feed-back scheme, you do not get something for nothing
[9,10]: we must have sub-binomial resolution to get a sub-
binomial distribution.

From a practical perspective, of course, if we are not
able to resolve the atomic fluctuations to this precision,
we shall not be sensitive to the corresponding noise in our
precision measurement either – the ability to produce twin
atoms comes with the need for them! We may also state
our goals in a different manner: given that squeezing and
other quantum correlation phenomena may be realized in
optical fields, we investigate in this work whether we can
map, transfer or copy some of these phenomena onto col-
lective atomic variables. The squeezing of light that may
improve our optical phase measurement and eventually
our atom number detection is thus “transformed” into a
number squeezing in the atomic sample.

We have considered only the reduction of fluctuations
in occupation numbers. We are presently considering other
collective atomic operators, relevant to atomic ground
states with larger Zeeman degeneracy, involving e.g., the
9 different states of the Jg = 4 ground state in Cs. We

imagine that with QND probing of different circular or lin-
ear polarization components of fields, followed by suitable
feed-back optical pumping, a variety of classes of fluctua-
tions may be addressed and modified.

Let us finally mention the possibility to apply the prob-
ing and feed-back optical pumping on different and spa-
tially separate samples of atoms. Our scheme, in principle
allows us to ensure that two traps contain very closely the
same number of atoms in specific internal states, and it
thus offers improved sensitivity to local external pertur-
bations of the samples changing these numbers. Our work
is thus also related to a recent proposal for improved sen-
sitivity of atomic interferometers by use of QND measure-
ments of atomic populations [13].

We recall that the scheme works in an entirely classical
manner, e.g. describable by Bertlmann’s socks [14] or by
balls in buckets, like in Fig. 2b); further generalization,
involving quantum entanglement of remote samples, are
currently under investigation [15].
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